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1 Introduction

The California Public Utilities Commission (CPUC) staff has prepared this “Revised 2019 Unified Resource
Adequacy and Integrated Resource Plan Inputs and Assumptions — Guidance for Production Cost
Modeling and Network Reliability Studies” document (2019 Unified RA&IRP I&A) to serve five primary
functions:

1. Describe the production cost modeling methodology, inputs, and assumptions that were used to
inform the CPUC’s Integrated Resource Plan (IRP) proceeding (R.16-02-007) in 2018, including
the system operational and reliability studies described in Attachment B of D.18-02-018* and
Attachment A of the November 15, 2018 ruling? in the proceeding.

2. Describe the production cost modeling methodology, inputs, and assumptions that were used to
inform the CPUC’s Resource Adequacy (RA) proceeding (R.17-09-020) in 2018, specifically
Effective Load Carrying Capability (ELCC) calculations.

3. Describe the production cost modeling methodology, inputs, and assumptions that were used to
inform the CPUC’s Aliso Canyon Order Instituting Investigation proceeding (1.17-02-002) in 2018.

4. Describe certain inputs and assumptions to inform the production cost modeling and network
reliability (“power flow”) studies of the CAISO’s 2019-20 Transmission Planning Process (TPP),3
including the allocation of generic resources to transmission substations.

5. Serve as a guide for other entities conducting similar electric system modeling.

The 2019 Unified RA&IRP I&A primarily documents model inputs that were used during 2018 modeling
activities. It does not include modeling improvements and updates that CPUC staff expects to undertake
during the 2019 modeling activities taking place for the IRP proceeding. See the 2019-2020 IRP Events
and Materials page on the CPUC website for more recent information about modeling inputs going

forward.*

The Unified RA&IRP I&A is “unified” in the sense that it consolidates descriptions of modeling inputs and
guidance for the five primary functions listed above in a single document and associated sets of data
that are posted on the CPUC’s website. The production cost modeling methods and data to support
modeling in the IRP, RA, and Aliso Canyon proceedings are consolidated in one document because the
three proceedings share a common production cost modeling platform with similar data requirements.
The Unified RA&IRP I&A is also “unified” in the sense of providing for a common and consistent set of
modeling conventions and input data to facilitate comparison of study results across different planning
processes at the CPUC and across different agencies.

1 Available at: http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M209/K771/209771632.PDF.
2 Available at: http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M241/K155/241155600.PDF.

3 |n accordance with a May 2010 MOU between the CAISO and the CPUC, and in coordination with the CEC, the
CPUC develops the new resource portfolios used by CAISO in its annual Transmission Planning Process (TPP)
4 See: http://www.cpuc.ca.gov/General.aspx?id=6442459770
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1.1 Background and Roadmap

In previous years, the “Assumptions and Scenarios” document® was issued annually via ruling in the
CPUC’s Long-Term Procurement Plan (LTPP) proceedings® to provide for a common set of data to guide
electric system modeling activities in the LTPP proceeding and the CAISO’s TPP in the same calendar
year. The 2016 Order Instituting Rulemaking to Develop an Electricity Integrated Resource Planning
Framework and to Coordinate and Refine Long-Term Procurement Planning Requirements (R.16-02-007)
superseded the LTPP proceedings and is now commonly referred to as the IRP proceeding. As such, the
historical “Assumptions and Scenarios” document is superseded by this document, the Unified RA&IRP
I&A, which is designed for the new IRP process and intended for use in other proceedings requiring
similar types of electric system modeling. The Unified RA&IRP I&A is expected to be updated annually
and issued in February each calendar year.

The historical “Assumptions and Scenarios” document was also accompanied by two key Excel
workbook deliverables, the Renewables Portfolio Standard (RPS) Calculator & Portfolios” and the
Scenario Tool.2 These workbooks are superseded by new deliverables designed to support the new IRP
process. The new deliverables include the following:

e Workbooks containing resource portfolios to plan for long-term (typically 10 years forward)
infrastructure expansion at the CAISO system level. The portfolios are based on the IRP
Reference System Plan or the IRP Preferred System Plan. In general, IRP capacity expansion
modeling (currently conducted using the RESOLVE model®) forms the basis of the Reference
System Plan while the aggregation of IRPs submitted by individual load-serving entities (LSEs)
forms the basis of the Preferred System Plan.1°

e Workbooks capturing the inputs to the Strategic Energy Risk Valuation Model (SERVM)*!
production cost model being used by CPUC Energy Division staff to support the IRP, RA, and
Aliso Canyon proceedings.

The historical “Assumptions and Scenarios” document was also accompanied by supplemental data and
guidance from the CEC and the three large Investor Owned Utilities to allocate load and/or generic
resources to transmission substations. This information will continue to be pointed to or provided with
the Unified RA&IRP I&A document.

> The February 2017 version: http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M176/K948/176948479.PDF This
document has also been referred to as the Standard Planning Assumptions, or SPA.

®The previous LTPP proceeding is R.13-12-010.

7 See RPS Calculator v6.2 here: http://www.cpuc.ca.gov/RPS _Calculator/

8 See Scenario Tool 2016 v1.2 here: http://www.cpuc.ca.gov/General.aspx?id=11681
2 See RESOLVE model here: http://www.cpuc.ca.gov/General.aspx?id=6442457210

10 The IRP Proposed Decision published March 18, 2019 chose to use a RESOLVE-based portfolio as the Preferred
System Plan rather than a portfolio based on the aggregation of LSE IRPs

1 Developed by and commercially licensed through Astrape Consulting. http://www.astrape.com/servm/
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The remainder of this document is comprised of two major sections. First, it describes modeling
conventions and input development for the SERVM model that was used to conduct the various types of
production cost modeling studies in support of the IRP, RA, and Aliso Canyon proceedings. Resource
portfolios modeled in SERVM flow from the IRP Reference System Plan or Preferred System Plan. The
last section of the document describes additional guidance and data required for the network reliability
studies typical of the CAISO’s TPP.

1.1.1 Acronyms

Acronym Definition

1-in-10 1-in-10 year weather peak demand forecast
1-in-2 1-in-2 year weather peak demand forecast
AAEE Additional Achievable Energy Efficiency
AAPV Additional Achievable Photovoltaics (behind-the-meter solar PV)
ADS Anchor Data Set

BTM Behind-the-meter

CAISO California Independent System Operator
CARB California Air Resources Board

CEC California Energy Commission

CED California Energy Demand Forecast

CHP Combined Heat and Power

CPUC California Public Utilities Commission
DCPP Diablo Canyon Power Plant

DR Demand Response

ELCC Effective Load Carrying Capability

EO Energy-Only (deliverability status)

EV Electric Vehicle

FCDS Full Capacity Deliverability Status

IEPR Integrated Energy Policy Report

10U Investor Owned Utility

LCR Local Capacity Requirement

LOLE Loss of Load Expectation

LSE Load Serving Entity

LTPP Long Term Procurement Plan

NQC Net Qualifying Capacity

OTC Once-through-cooling

PG&E Pacific Gas & Electric

POU Publicly Owned Utility

PV Photovoltaic

RPS Renewables Portfolio Standard




SCE Southern California Edison

SDG&E San Diego Gas & Electric

SERVM Strategic Energy Risk Valuation Model

TEPPC Transmission Expansion Planning Policy Committee
TPP Transmission Planning Process

WECC Western Electricity Coordinating Council

2 Production Cost Modeling - Inputs, Assumptions, and Methods

2.1 Scope

This section describes the assumptions and input sources that CPUC’s Energy Division staff used for
Production Cost Modeling (PCM) to support the Resource Adequacy (RA) proceeding, the Integrated
Resource Planning (IRP) proceeding, and the Aliso Canyon proceeding through 2018.1%2 Proceeding-
specific documents in each proceeding defined the higher-level modeling steps and activities to support
each respective proceeding. For example, the higher-level modeling steps and activities done for the
IRP proceeding in 2018 are described in Attachment B of the IRP Decision D.18-02-018'3 and Attachment
A of the November 15, 2018 ruling in the proceeding.*

This section includes the following key components:

e Review of SERVM, software which is being used by Energy Division Staff to conduct LOLE and
ELCC analysis

e Primary data sources and assumptions

e Interagency coordination

e Foundational definitions and assumptions for RA and IRP modeling

e Fundamental description of the order of studies needed to perform monthly LOLE and monthly
ELCC studies

e Gathering and use of weather data for development of synthetic load shapes using weather
normalization and regression analysis

e Sources of and use of weather data and weather region definitions to create hourly profiles for
wind and solar production

e Description of different resource portfolios used in 2018 modeling activities

e Data related to conventional (fossil fuel) generators

12 The previous RA proceeding is R.14-10-010. The current RA proceeding is R.17-09-020. The current IRP
proceeding is R.16-02-007. The Aliso Canyon Investigation proceeding is 1.17-02-002.

13 http://docs.cpuc.ca.gov/SearchRes.aspx?docformat=ALL&DocID=209771632
14

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/Utilitiesindustries/Energy/EnergyPrograms/ElectPo
werProcurementGeneration/DemandModeling/R1602007 PCM%20ruling%2011-14-
18%20Attachment%20A%20PDF.pdf
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e Burner-tip natural gas price forecasts
e Development of data inputs and hourly profiles for hydro generators
e Data for demand response and storage resources

Study results will be separately documented and driven by the respective needs of the IRP, RA, and Aliso
Canyon proceedings.

2.2 Review of SERVM Software

Energy Division staff use SERVM to calculate numerous reliability, operational, and cost metrics for a
given study year in light of expected weather, overall economic growth, and unit performance. For each
of these factors, variability and forecasting uncertainties are also taken into account.

As with all probabilistic models, SERVM attempts to simulate the study year many thousands of times
over, with each simulation reflecting a slightly different set of weather, economic, and unit performance
conditions. Iteration conditions are selected probabilistically, based on how likely they are to occur. In
SERVM, a given future study year is modeled by simulating the operation of a fleet of power plants in
that future year to meet hourly electric demand that reflects a wide variety of actual historical weather
patterns. For each of thirty-five possible weather years, six to eight points of load forecast error can be
simulated, creating roughly 210 to 280 scenarios. Each of these scenarios is in turn run with a hundred
or more unit outage draws, creating thousands of iterations for the simulation. Results are expressed as
the probability-weighted expected average metrics across the whole range of variability studied. The
results provide a comprehensive distribution of loss-of-load events, unserved energy, and other
reliability metrics. Expected values and confidence intervals are calculated based on these distributions.

2.3 Primary Data Sources and Assumptions

2.3.1 Interagency Coordination and Data Sources

Foundational to the task of coordinating the RA and IRP modeling efforts is coordination between the
key California agencies that cooperatively plan for the future of electric service, including the CEC,
CAISO, and CPUC. Without close integration and coordination, the complicated work described in this
document would be impaired. Chief among the modeling data utilized by Energy Division are the CEC's
Integrated Energy Policy Report (IEPR) and “California Energy Demand” forecast which includes electric
demand and fuel price forecasts, the CAISO’s datasets which catalog the generating facilities and
transmission topology that operate to provide electricity to customers, and the CPUC’s IRP and other
resource programs datasets which lay out plans for new investment in generation and demand side
alternatives.

California annual peak and energy demand forecasts including projections of demand-side resources
such as energy efficiency and rooftop solar are sourced from the most recently adopted CEC IEPR
California Energy Demand (CED) forecast. According to agreement between leadership at the CAISO,
CEC, and the CPUC, planning processes at each agency will use the Single Forecast Set specified by the
most recent IEPR CED forecast.



Energy Division staff sourced existing CAISO generating unit information from the CAISO MasterFile. In
order to participate in the CAISO energy market and ensure cost effective dispatch of their plants,
generator owners maintain a wide array of information in the MasterFile database. The MasterFile is
used by the CAISO in order to optimize dispatch in light of an array of unit-specific characteristics such as
start-up costs and start-up time, ramp rate, heat rate, and forbidden operating ranges. A number of the
data fields in the MasterFile are confidential and are accessible to Energy Division staff via an annual
subpoena. Definitions of all the fields in the MasterFile are public and are posted on the CAISO
website.

In addition to the CAISO, the Western Electric Coordinating Council (WECC) also compiles a base case
dataset for the WECC and its members to use as a common basis for their modeling. Each Balancing
Authority may have unique access to accurate and confidential data for generators and other market
participants within its footprint, but since the WECC is so interconnected, it is difficult to accurately
model reliability and economic conditions in one Balancing Authority without attention to generators
and loads in the surrounding Balancing Authorities. To facilitate consistent modeling by all Balancing
Authorities in WECC, every two years WECC produces a Common Case dataset containing generic
information for all load and supply data across WECC.'® Produced by a subcommittee of WECC
members called the Transmission Expansion Planning Policy Committee (TEPPC), this dataset is
generated for both the immediate next year and for a year ten years into the future. For modeling
activities during 2018, Energy Division staff imported the TEPPC 2026 Common Case v2.0 into the
SERVM dataset in order to model generating units outside of the CAISO, as well as units in most of the
rest of the Western Interconnect. The peak and energy demand forecasts for regions outside of
California are also sourced from the TEPPC 2026 Common Case.

The TEPPC 2026 Common Case represents the final Common Case dataset that will be produced by
TEPPC. WECC is transitioning to a new organizational model and a new group called the Reliability
Assurance Committee will produce a new dataset called the Anchor Data Set (ADS). It is anticipated that
the ADS will take the place of the Common Case and will additionally incorporate modeling inputs for
power flow modeling. Energy Division will transition to ADS data for the next IRP cycle (expected to be
2019-20).

The CAISO MasterFile and the WECC TEPPC Common Case dataset each have their advantages and
disadvantages. For generators that supply information to the CAISO MasterFile, there is a larger range of
information available to Energy Division for modeling purposes but some of it is confidential and/or not
directly applicable to production cost modeling.

The WECC TEPPC Common Case dataset, being public data, is often generic and aggregated by class
average. The 2026 TEPPC Common Case has created unit specific heat rate curves and minimum

15 MasterFile field definitions can be downloaded from
http://www.caiso.com/Documents/GRDTandIRDTDefinitions.xls. CAISO MasterFile data are confidential, and not
able to be posted; however, it may be possible to aggregate portions of these data for stakeholder review.

16 WECC TEPPC 2026 Common Case v2.0 datasets are available for download here:
https://www.wecc.biz/Reliability/Forms/Allltems.aspx
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operating levels based on public data available from the Continuous Emission Monitoring System
database, and this represents a significant improvement in data quality, but there are other areas where
there are challenges to being as precise as possible. For this reason, it is common for particular
Balancing Authorities within the WECC to substitute their own confidential, internal data for the TEPPC
Common Case inputs related to their own specific balancing authority. Energy Division staff will use the
TEPPC 2026 Common Case for regions external to the CAISO balancing area. For regions internal to the
CAISO area, staff will use the generator-specific information obtained via subpoena from the CAISO
MasterFile.

The CEC provides capacity supply forms for all LSEs within California, listing for all LSEs (including SMUD
and LADWP) the unit specific sources of capacity that the LSE is relying on to meet energy needs. These
Utility Capacity Supply Forms are updated annually, public, and posted to the CEC website.!” Staff used
these forms to supplement and/or cross-check with information from the CAISO Masterfile and the
TEPPC 2026 Common Case.

Assumptions for new resources projected to come online by a future study year are sourced from the
IRP proceeding’s Reference System Plan adopted in February 2018 and developed by the RESOLVE

|’18

capacity expansion model,*© or the aggregation of individual LSE Plans that were filed in the IRP

proceeding in August 2018.

All cost data (including generator operation and maintenance (O&M), startup costs, and fuel handling
costs) were adjusted to 2016 dollars using a deflator series developed by the CEC in the IEPR process®®
and which equals approximately 2% inflation, year over year. This is consistent with the convention in
the RESOLVE model to report all costs in 2016 dollars.

Other datasets used by Energy Division staff include the Generator Availability Data System (for
generator forced and scheduled outage statistics), the National Oceanic and Atmospheric
Administration (NOAA) for weather data to generate solar and wind production profiles, the National
Renewable Energy Laboratory (NREL), and data specifically gathered from the utilities. These data and
their use in SERVM will be described in further detail in the sections that follow.

2.3.2 Key Definitions and Reliability Metrics

Before the development of today’s advanced computing, planners calculated probability of loss-of-load
for the peak hour of each day, and only on weekdays, equating to about 260 data points for a study
year. Today’s computers perform simulations, not simple calculations, and perform simulations of each
hour of the year thousands of times with multiple stochastic variables. Thus a LOLE value of 0.1, which
is a direct translation of the decades old industry “one day in ten years” standard, may warrant
reconsideration in light of the sophisticated hourly models and advanced computing available now.

17 These forms are posted to the CEC website here: http://energyalmanac.ca.gov/electricity/s-
1 supply forms 2013/
18 http://www.cpuc.ca.gov/General.aspx?id=6442457210

19 The deflator series is posted here. Itis derived from the April 2018 version of the CEC’'s NAMgas model posted
here.
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LOLE and ELCC studies, particularly those done to meet the needs of the IRP and RA proceedings,
require a number of foundational assumptions and modeling conventions in order for the studies to
proceed. Staff made assumptions about what probabilistic reliability standard at which to calibrate the
CAISO system for both monthly and annual studies, and the definition of a loss-of-load event. Staff also
performed a convergence analysis to evaluate the optimal number of iterations to run for each case.

In LOLE and ELCC studies for the RA and IRP proceedings, staff will use the following foundational
conventions:

e The LOLE reliability target range for calibrating the CAISO system in annual studies will be 0.095
to 0.105 LOLE.

o The LOLE reliability target range for calibrating the CAISO system in monthly studies will be 0.02
to 0.03 LOLE for each month.?°

e Multiple loss-of-load events occurring within one day shall count as one event for purposes of
counting events towards a reliability target. The loss-of-load event occurs when the frequency

response constraint®!

is fully relaxed and when regulation up (1.5% of hourly forecast load) and
spinning reserves (3.0% of hourly forecast load) cannot be maintained, i.e. firm load is assumed

to be curtailed when available capacity is less than 104.5% of load.

2.3.3 General Order of Studies in ELCC Modeling

The current scope and sequence of ELCC studies are defined by proceeding specific documents. The
scope and sequence of ELCC studies that were done to support the IRP proceeding in 2018 were defined
within Attachment B of the IRP Decision D.18-02-018.22 The most recent ruling describing ELCC studies
in support of the RA proceeding is February 13, 2019.23

Because of the complexity of the ELCC concept, the remainder of this subsection explains a generalized
application of the ELCC framework to calculate monthly capacity value. As stated above, the specific
scope and sequence of ELCC studies are captured in proceeding specific documents.

ELCC methods can be used to assign capacity value to particular resources or sets of resources within a
larger electric system. The calibration and sequence of these studies is critical. The process is illustrated
in the following chart:

20 Specifically, the monthly LOLE target was created by first taking the industry standard 0.1 LOLE annual target
and assuming that most of those events map to the four peak months of June through September, or one third of
the year. Assuming a similar target reliability for the rest of the year would mean that total LOLE over the entire
year should have a target of 0.1x3=0.3. Thus, monthly LOLE studies would have a monthly target LOLE of
0.3/12=0.025, i.e. a target range of 0.02 to 0.03.

21 Ancillary services and frequency response requirements are described later in this document in the System
Inputs section 2.10.

22 http://docs.cpuc.ca.gov/SearchRes.aspx?docformat=ALL&DocID=209771632
23

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/Utilitiesindustries/Energy/EnergyPrograms/ElectPo
werProcurementGeneration/DemandModeling/ELCC 2 13 19.PDF
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Figure 1: Order of RA ELCC Studies

Order of Studies - Cascade

+ ELCC studies
follow an order
- results
cascade

* Resultsof one
level serve as
control totals
for the lower

« Eachlevel is
more granular
than the
previous — can
be broken into
technological
or locational
subcategories

ELCC studies rely first on LOLE studies, and monthly ELCC studies require monthly LOLE studies. A Level 1
study is to calibrate the LOLE level of the overall electric system to the desired reliability level. Staff will
add or remove electric capacity on a monthly basis in a predetermined order in order to result in a LOLE
that is levelized and within the desired range, i.e. between 0.02 and 0.03.

Once LOLE level is calibrated on a month specific basis, staff will move on to Level 2. Staff will remove
all wind and solar generators from the fleet of generators, in all months, then on a month specific basis,
reinsert Perfect Capacity in increments until LOLE again is between 0.02 and 0.03 in each month.

Level 2 analysis in effect sets a control total meant to represent the total ELCC of the generators in
guestion. Since there are often interaction and diversity effects between wind and solar generation in
the way they contribute to reliability, this Portfolio ELCC study determines their total ELCC value.

In Level 3 analysis, staff performs individual technology specific ELCC studies, which are studies of a
subset of the Portfolio ELCC studied in Level 2. All wind or all solar generators are removed from the
fleet and Perfect Capacity is added back until LOLE is gain between 0.02 and 0.03 on a month specific
basis. When the ELCC of wind and solar individually are determined, they are totaled and compared to
the Portfolio ELCC results from Level 2. Technology specific ELCC values are adjusted either up or down
so that their total is equal to the Portfolio ELCC value.

When each technology specific ELCC is determined, they become control totals for subsequent Level 4
ELCC analysis. For example, all tracking solar would then be removed, and Perfect Capacity would be
added to return the system to LOLE in the desired range. Then the same with fixed tilt solar, and the
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resulting ELCC values of fixed and tracking solar would be totaled and compared to the solar technology
ELCC values from Level 3 to see if they would be adjusted upwards or downwards to arrive at their
individual ELCC values.

ELCC values are either expressed as MW equivalent of perfect capacity to a MW total of other
generation, or as a percentage. The percentage ELCC represents the ratio of MWs of Perfect Capacity to
MWs of generation removed. The ELCC percentage factor is applied to the nameplate MW of a
particular generation type to derate its value and demonstrate the amount of “effective capacity” it
provides.

The order of studies above references the steps of removing or adding units to calibrate a system to a
target reliability level. Staff used the following conventions for those steps:

e Removal of generation to surface LOLE events in overbuilt systems shall be according to the
following order:?* Conventional thermal generators that have announced their retirement will
be removed first. If LOLE remains below the target level, additional conventional thermal
generation will be removed from CAISO areas in amounts proportional to service area load in
each area. The oldest generation in each area will be removed first. No hydro generation or
renewable generation will be removed.

e Addition of generation to reduce LOLE events in underbuilt systems shall use perfect capacity as
additions. Perfect capacity is a modeling proxy for generation with no operating constraints, e.g.
always available, starts instantly, infinite ramp rate, no minimum operating level.

e Although the calibration step alters the system under study, this is a typical way of performing
ELCC calculations and is not expected to significantly affect the ELCC measurement.

2.4 Weather Data and Regions

Weather is an integral input into probabilistic reliability modeling. It is used both in the development of
synthetic load shapes, which are highly correlated to temperature and humidity, and in the
development of generation profiles for weather-sensitive resources such as wind and solar. In order to
balance the need to model the wide range of weather across the state at any given time and the need to
keep modeling times feasible, a set of representative weather stations are selected and grouped to
create regions that are modeled as homogeneous areas. This section details the weather data utilized,
the sources for this data, the regions modeled, and the process by which these regions were created.

2.4.1 Region Designations

Load, wind, and solar shapes are developed to correspond to regions modeled in SERVM. Staff has
currently organized inputs in SERVM into eight distinct regions within California and sixteen outside of
California based on utility service areas. While most utility service areas are modeled individually, some
are aggregated, as specified in the table below. These regions are utilized throughout SERVM to
associate groups of generation facilities with common weather, load, weather-related generation

24 Note that the order specified here is simply a modeling convention picking one systematic way to remove
capacity for the sole purpose of calibrating a system to a target reliability level in order to perform ELCC
calculations. The choice and order of removing units does not imply the units are likely to retire or should retire.
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profiles, transmission constraints, and utility service territories. The regions (zones) modeled are listed
in Table 1, below. The regions below do not correspond to transmission-constrained Local Areas, and
are not granular enough for transmission planning. In the future, higher geographic granularity could be
achieved by splitting the regions into smaller areas. However, it is unlikely a production cost model will
ever approach the fidelity required for network reliability (power flow) studies. Such studies are not in
scope for Energy Division staff at this time.
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Table 1: Assignme

nt of WECC regions to modeled SERVM zones

SERVM Region

Description

California Regions

11D Imperial Irrigation District

LADWP Los Angeles Department of Water and Power, Burbank, Glendale

PGE_Bay Pacific Gas & Electric (Greater Bay Area) 2°

PGE_Valley Pacific Gas & Electric (Valley) 26

SCE Southern California Edison, Valley Electric Association

SDGE San Diego Gas & Electric

SMUD Balancing Authority of Northern California

TID Turlock Irrigation District

Non-California Regions

AZPS Arizona Public Service Co

BCHA_AESO British Columbia Hydro Authority, Alberta Electric System Operator

BPAT Bonneville Power Adminstration, Avista Corporation, Chelan County PUD,
Douglas County PUD, Grant County PUD, Puget Sound Energy, Seattle City
Light, Tacoma Power

CFE Comision Federal de Electricidad

IPCO Idaho Power Co

NEVP Nevada Power Co, Sierra Pacific Power

NWMT_WAUW | Northwestern Energy, WAPA Upper Wyoming

PACE Pacificorp East

PACW Pacificorp West

PNM_EPE Public Service Co of New Mexico, El Paso Electric Co

PortlandGE Portland General Electric Co

PSCO Public Service Co of Colorado

SRP Salt River Project

TEPC Tuscon Electric Power Co

WACM WAPA Colorado Missouri

WALC WAPA Lower Colorado

Figure 2 below is a

n illustrative map of Western Interconnection Balancing Authorities and is generally

consistent with the region definitions used in SERVM.

25 Includes these lines from IEPR demand forecast Form 1.5a: CCSF, NCPA-Greater Bay Area, Other NP15 LSEs-Bay

Area, PG&E Service Area-Greater Bay Area, Silicon Valley Power, COWR-N, CDWR-ZP26

26 |ncludes these lines from IEPR demand forecast Form 1.5a: NCPA-Non Bay Area, Other NP15 LSEs-Non Bay Area,

PG&E Service Area-Non Bay Area, WAPA, PG&E Service Area-ZP26
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Figure 2: Balancing Authorities in WECC

Western Interconnection Balancing Authorities
January 5, 2017

AESO - Alberta Electric System
Operator

AVA - Avista Corporation

AZPS - Arizona Public Service
Company

BANC - Balancing Authority of
MNorthern California

BCHA - British Columbia Hydro
Authority

BPAT - Bonneville Power
Administration-Transmission
CFE - Comision Federal de
Electricidad

CHPD - PUD No. 1 of Chelan County
CI50 - California Independent System Operator
DEAA - Arlington Valley, LLC

DOPD - PUD Mo. 1 of Douglas County

EPE - El Paso Electric Company

GCPD - PUD Mo. 2 of Grant County

GRID - Gridforce Energy Management, LLC
GRIF - Griffith Energy, LLC

GRMA - Gila River Power, LP

GWA - MaturEner Power Watch, LLC
HGMA - New Harguahala Generating
Company, LLC

1D - Imperial Irrigation District

IPCO - Idaho Power Company

LOWP - Los Angeles Department

of Water and Power

MEVF - Mevada Power Company
NWMT - NorthWestern Energy

PACE - PacifiCorp East

PACW - PacifiCorp West

PGE - Portland General Electric Company
FNM - Public Service Company of Mew Mexico

PSCO - Public Service Company of Colorado
PSEl - Puget Sound Energy

SCL - Seattle City Light

SRP - Salt River Project

TEPC - Tucson Electric Power Company
TIDE - Turlock Irrigation District

TPWR - City of Tacoma, Department of Public Utilities = M
WACM - Western Area Power Administration, %
Colorado-Missouri Region

WALC - Western Area Power Administration, Lower Colorado Region
WALIW - Wester Area Power Administration, Upper Great Plains West
WWA - NaturEner Wind Watch, LLC

Not a NERC-
Registered BA

. PACE & PACW are a
. single registered

entity but two BAs

- =

BA boundaries are approximate and for illustrative purposes only

Source: WECC website, downloaded January 30, 2018
https://www.wecc.biz/Administrative/Balancing Authorities JAN17.pdf
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2.5 Weather Normalization Process: Development of Hourly Synthetic Load

Profiles
The objective of weather normalization is to create synthetic load profiles that accurately represent the
relationship of hourly customer electricity demand to historical weather patterns, over as wide a range
of historic weather patterns as possible. Of particular importance is the accurate preservation of both
spatial and temporal correlations occurring between historical load and weather patterns. There is also
the need to establish the relationship of recent weather patterns to recent electricity demand. In other
words, relationships between weather and electricity demand are changing as customers use more
efficient lighting and cooling equipment, and as the weather changes due to climate change, so the
relationship between load and weather should be established for a set of recent, representative years.

Staff’s weather normalization is informed by 35 years of historical hourly weather data across the years
1980 through 2014, and is used to develop 35 years of hourly synthetic load shapes for 24 geographical
regions across the western United States. Hourly historical load profiles across the same geographical
regions for the last 5 years of the time series (2010 through 2014) are used to train the model. The
model is described in more detail below.

The relationship between weather and electricity demand should focus on the relationship of weather
on a granular locational level to customer electricity consumption, where consumption refers to actual
demand, independent of any self generation. See Table 2 for definitions of the various load types
referred to in this document.

Whereas meter data is available that captures actual energy delivered, or sales, to the customer by the
utility, consumption data is typically not measured directly. However, attempting to model the
relationship between weather and sales, defined as consumption less any self generation, does not
capture a meaningful physical relationship. This is because sales depends, for example, on the number
of solar panels installed on a customer’s roof, which has no relationship to the weather effects
experienced by the electricity customer.

In the absence of customer self generation, consumption and sales are identical, but with increasing
levels of customer self generation, consumption becomes counterfactual. Therefore customer electricity
consumption must be reconstituted from the utility sales values by simulating behind the meter
generation values, based on installed photovoltaic capacity and hourly insolation profiles.
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Table 2: Load type definitions - consumption, sales, system and net load

Note that SERVM models behavior at the system level, and does not explicitly model both retail sales and system
load. Said another way, the analysis grosses up retail sales to system level load, accounting for losses.

Load Type

Relation to Other Terms

Rationale

Measurement

Consumption

Sum of electrical energy
used to operate end-use
devices excluding
charge/discharge of
storage

Consumption is the
term used in CEC
forms to capture
onsite energy usage.

With increased self generation, and
when relying on net energy metering
to apply cost responsibility to end-
users, consumption becomes
counterfactual.

intermittent renewable
generation

definition as being
used by CAISO

Sales Consumption less BTM Sales is the energy Metered by the utility on a short
onsite generation term to indicate the interval basis if the utility has
including storage net energy delivered | deployed interval metering systems
charge/discharge through the meter to | for end-users; otherwise could be

the end-use customer | estimated using load research
practices

System Sales load plus T&D Standard electricity Generally measured by power plant
losses plus theft and industry term. CEC output and import flows, e.g. a top
unaccounted for defines “hourly down measurement inferring loads

system load” in its rather than a bottom up summation
data collection of individual customer loads
regulations

Net Load System load less system | This is the same BAA estimation of system load less

measured output of wind and solar
supply-side renewables

2.5.1 Data Collection and Scrubbing
Data used in this process includes hourly historical weather data (35 years), and hourly historical load
data (5 years of sales data) along with any hourly self generation or demand response needed to

calculate consumption from sales values. This section describes the data collection and data scrubbing

process required to perform the regression analysis used in the weather normalization process.
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2.5.1.1 Weather Data

Hourly historical weather data is obtained from the National Climate Data Center (NCDC) for years 1979
through 2014.2”28 Hourly temperature and dew point data are downloaded for nearly 60 weather
stations across the western United States corresponding to the western electrical grid footprint,
including contiguous parts of Canada and Mexico. For California, where the finest available spatial
resolution is desired, staff used over 20 weather stations to inform the model. In several cases, weather
station data needs to be stitched together from geographically adjacent weather stations when a given
station lacks a contiguous history across the full range of years. Note that all hourly weather station data
from the NCDC ISD-Lite dataset are provided in a manner that is corrected for daylight savings, that is,
all hours correspond to standard time in the local time zone.

SERVM uses 24 geographic zones, 8 of which are located in California. Weighted temperature and dew
point values are determined for each of the 24 SERVM zones using the 60 NCDC weather stations. A set
of normalized weighting factors mapping the NCDC weather station data to SERVM zones is developed
for each zone by season. The weighting factors are determined by season from the best fit of a
logarithm of consumption load versus linear temperature model.

The raw hourly weather data profiles as obtained from the NCDC contain missing data segments. Staff
analyzed the distribution of missing data and found the mode length for missing temperature data is
about 10 days, coincidentally roughly the length of time of a typical employee vacation. It may be that
weather station data is captured by a single employee, so that when they are on vacation, missing data
segments occur. Likewise, dew point data also has missing data segments. Staff filled in missing
observations in both temperature and dew point data using linear interpolation to ensure complete
hourly coverage across the full 35 year time span.

Additionally, hourly solar insolation, wind speed, and cloud cover data was obtained from the NCDC
dataset and developed for use in calculating self generation and system renewable energy production
for use by the SERVM model.

2.5.1.2 Load Data

Developing hourly consumption data requires collecting metered sales data and reconstituting
consumption by adding back the hourly effects of BTM generation or demand response that was not
metered separately. While some hourly BTM self generation and demand response data?® can be
obtained for some geographic regions within California and used to develop hourly consumption profiles

27 National Climate Data Center (NCDC): https://www1.ncdc.noaa.gov/pub/data/noaa/isd-lite/

28 While the weather normalization spans 1980 through 2014, 1979 is used to remove boundary issues that arise
when calculating lagged temperature and dew point values at the beginning of the time series, as discussed below.
2% The hourly impacts of demand response are difficult to recreate; for areas internal to CAISO, Energy Division
staff issued a data request for the actual hourly impacts from the three IOUs that manage the demand response
programs from the 2010 to 2016 program years. We collected data for the years 2011 through 2016 to ensure
that the trends were reasonable past 2014, but only hourly data for 2011 through 2014 was used for reconstituting
consumption.
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from sales,® it is difficult to obtain this information for all types of BTM effects and for all regions inside
or outside of California. For regions outside California where BTM self generation and demand response
profiles are not available, staff simply used hourly sales profiles in lieu of hourly consumption profiles.
While this introduces some error into the weather normalization process, staff believes the impacts are
minimal because (a) where BTM self generation and demand response is not available outside of
California over the time frame we are modeling, those quantities are expected to be minimal, and (b)
the focus is on the behavior of the electric grid within California, so small discrepancies between
consumption and sales outside California should have minimal impact on results. As BTM self generation
and demand response profiles outside California become available, staff will incorporate them into the
analysis.

Hourly sales data for years 2010 through 2014 is obtained from multiple sources. For California regions
within the CAISO footprint, staff used hourly CAISO Energy Management System (EMS) sales data.?! For
the remainder of the WECC footprint, staff obtained hourly sales data from FERC Form 714.32 Hourly
sales data for Pacificorp East and West regions needs to be obtained independently, since it is provided
as a single region in Form 714, whereas staff has elected to model them as two separate zones.?? Sales
data for Canadian regions are also obtained independently.3* Loads for all these regions are mapped into
the zones used in SERVM.

All load data used in the weather normalization analysis is corrected for daylight savings time shifts,
resulting in a consistent dataset in standard time in the local time zone. This is an important step that is
required in order to accurately align hourly load profiles with hourly weather profiles. In many cases,
FERC Form 714 data is not corrected for daylight savings. However, FERC Form 714 is provided in a 25-
hour format that enables the user to unambiguously correct for daylight savings.?® In contrast, CAISO
EMS data does not appear to consistently and clearly indicate if and when daylight savings is in effect.
Therefore, CPUC staff performed a separate daylight savings correction to the CAISO EMS data in order
to consistently align it with the CPUC weather normalization process.

2.5.1.3 Behind-the-Meter Photovoltaic (BTM PV) Data
Since BTM PV generation is not individually metered or consistently accessible to CPUC staff, hourly
historical BTM PV generation is simulated. This requires a tabulation of cumulative BTM PV installed

30 Actual hourly demand response impacts (taken from utility reports of historical demand response events) are
added back into historical load figures to represent historical loads as if the demand response events had not
occurred. Thus, when demand response events are modeled for the study year in SERVM, there is no double
counting of demand response impacts (triggering modeled events on top of or in addition to historical events).
31 CAISO EMS data is proprietary, and is obtained via subpoena

32 Federal Energy Regulatory Commission (FERC) Form 714: https://www.ferc.gov/docs-filing/forms/form-
714/overview.asp

33 pacificorp data was obtained via subpoena

34 British Columbia (BC) hydro data: http://www.bchydro.com/energy-in-

bc/our system/transmission/transmission-system/balancing-authority-load-data/historical-transmission-data.html
35 FERC Form 714 instructions for participating Load Serving Entities instruct that a zero load should be placed in
the March skip ahead day to indicate when daylight savings goes into effect, and a 25th hour load should be
provided in the November fall back day when reverting back to standard time. This unambiguously allows for
adjustment to standard time in the local time zone.
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capacity by month and SERVM region, and the hourly production profile of PV generators by SERVM
region, from January 1, 2010 to December 31, 2014. The source of BTM PV installed MW per month for
areas within the CAISO area is CaliforniaDGStats.ca.gov.3® The source of BTM PV MW for Balancing
Authorities (BAA) and utilities outside of CAISO is Energy Information Administration (EIA) form 861 Net
Metering data.?” Staff obtained EIA data for 2011-2016 and filtered the “Utility Level-States” tab to
retain the BAAs within the WECC. Staff extracted data for the years 2011 through 2016 just to ensure
that the trends were reasonable past 2014, but only hourly data for 2011 through 2014 was used for the
weather normalization work. 2010 data was not available from EIA information, so staff had to assume
that the effect could be ignored. As mentioned above, California information was available from a
different source, which had data for the full 2010 to 2014 timeframe so modeling of California areas
should be more accurate.

To detect anomalies in the data, staff created filled line charts showing total installed BTM PV MW by
BAA and utility, by year and month for the 6 year period. The EIA Form 861 data consists of total
installed BTM PV MW, so the curves are expected to increase and include some flat sections when BTM
PV installations slow. The charts created with EIA Form 861 data revealed some dips and steep
increases, indicating incomplete data. For months in which the dips or steep increases were more than 4
MW, staff calculated reasonability adjustments. Staff made adjustments to less than 1% of the data
lines, for nine utilities in five states outside of California. Using the installed MW values by month and
SERVM region with the hourly production profiles for solar generation, staff simulated hourly BTM PV
effects which were added back to hourly sales data to reconstitute consumption.

2.5.2 Weather Normalization Model

Staff’s weather normalization approach is based on the Monash Electricity Forecasting Model,38 and is
consistent with the approach taken by the California Energy Commission’s weather normalization
process.3? In this approach, each hour of the day is modeled separately, and reconstituted at the end of
the process. This allows development of different regression relationships between hourly load and the
driver variables (e.g. temperature and dew point) for different hours of the day. For example, during
peak load hours, the relationship between the weather driver variables and consumption is more tightly
constrained than during off peak hours, and one would expect a better fit to the regression relationship
for these model hours. Furthermore, the model also separates out the impacts of the average annual
load, a scalar quantity defined by year, from the corresponding normalized hourly load profile shape.
This feature of staff’s approach essentially separates the scalar magnitude from a normalized load
shape.

In production cost modeling (PCM), staff relied on the CEC IEPR forecasts as the basis for the magnitude
of the average annual and peak load characterizing load profiles in the target year. Both average annual

36 These data are available for download at https://www.californiadgstats.ca.gov/

37 These data are available for download at https://www.eia.gov/electricity/data/eia861/

38 Monash Electricity Forecasting Model, see: https://robjhyndman.com/papers/MEFMR1.pdf
39 CEC Demand Analysis Working Group, Friday, March 17, 2017, Forecasting Hourly Loads, see:
http://www.dawg.info/sites/default/files/meetings/2.2017%2003-
17%20DAWG%20Long%20Term%20Hourly%20Elec%20Model%20Vaid.pdf
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and peak load are scalar quantities defined for each target year in the CEC’s 10 year IEPR forecast. Staff
linearly scaled the normalized load profiles generated by the regression analysis in a manner that
preserves the average annual and peak load for each target year modeled in the PCM (see Section 2.6.3
for more information on the load stretching algorithm). This approach separates impacts of the
magnitude of the (CEC IEPR-based) average annual and peak load from the corresponding normalized
load profile development process. In other words, the weather normalization process is only concerned
with developing a regression relationship between weather and normalized hourly load profiles, for
each geographic region in question.

In this weather normalization approach, p denotes the model hour, where p ranges from 1 to 24. If t
denotes the hour in our time series data corresponding to the most recent 5 years over which the
regression relationship is derived, then t ranges from 1 to approximately t,,4, ~ 24 X 365.25 X 5,
where the approximation depends on where the leap year falls. p can be writtenas p = [(t —
1)mod24] + 1.

As mentioned above, the model used to create a relationship between hourly load and the driver
variables separates average annual load from a normalized peak load profile, and for each region can be
written as:*°

log(y:p) = log(yip) +log(y,) (1)

Where:

® Yepls the hourly load for model p and hour t
® Yip is the normalized load profile

e Yy, is the average annual load corresponding to year i
Then the Monash approach can be used to model the normalized peak load profile as:
log(yip) = [ (WT,) + gp(DP,) + hy(t) + ResRate,,, + €,  (2)
Where:

e f,(WT,) models the effects of the weighted temperature WT

e g,(DP;) models the effects of the weighted dew points DP

e h,(t) models all calendar effects, including dummy variables for month, day of week, and
holidays

e h,(t) models all calendar effects, including dummy variables for month, day of week, and
holidays

e ResRate;;, models the effects of the residential retail rate, which serves to balance energy
consumption across the model regions, in which a relatively higher retail rate should lead to
lower consumption

40 Recall log(ab) = log(a) + log(b)
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e ¢, isan error term which is serially correlated, reflecting the fact that there are other
environmental conditions not captured by this model.

Apart from the logarithm of the normalized load term, the regression model is essentially linear.
However both the temperature and the dew point terms are able to capture the nonlinearity embedded
within these physical parameters. The nonlinearity in the load-temperature relationship can most easily
be understood by realizing that the load versus temperature relationship tends to have a ‘U’ shape, with
the minimum of the ‘U’ at about 70° F, the temperature at which most people do not require heating or
cooling. Below this temperature, load increases due to heating loads, and above this temperature, loads
increase due to cooling loads. Figure 3 illustrates this relationship corresponding to Hour 20 (8pm) for
the Pacific Gas and Electric service region in the bay area. The relationship in this figure is for
temperature (TO, where the 0 represent 0 lag, see below). Similar nonlinear relationships exist for dew
point, as well as for all lagged variables, discussed below. The nonlinear relationship is most easily
observed during peak hours, which is when the relationship between load and temperature, or dew
point and temperature, is most well defined.

Figure 3: Example of the nonlinear relationship between normalized load and temperature for a
particular region used in the CPUC PCM model. Historical normalized load (red points) versus
temperature for PGE_Bay (corresponding to Pacific Gas and Electric, bay area) for the 5 year model
training period. Only data for the model with hour ending 20 are shown. Temperatures are in
Fahrenheit.

Region: PGE_Bay Hour: 20 Variable: TO

Mean Consumption = 5307 MW

©
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Temperature effects are modeled in such a way as to incorporate previous day effects, and additional
lagged terms, which correspond to the same hour of the model (i.e. same value of p), as well as cross
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model terms (i.e. different values of p). An identical approach is taken to modeling dew point effects, so
the equation below for temperature effects can be used for dew point effects also. The temperature
effects term can be represented as:

6
Gip (WTy_p4j) + H9(xP?) + Hpm(xpt™)
j=1

6
FpWT) = > Fipy WT ) +
k=0
+ H;Jnax(xznax)
(3)
Where the functions below represents the nonlinear relationship between load and temperature:
e Fy,(WT._y) for the primary term (k = 0, corresponding to no lag) as well as cross model terms
(k =1 to 6) corresponding to different hourly models

* Gj, (WTt_24j) for the within model lagged terms (j = 1 to 6) corresponding to the same hourly
model, but lagged from one to six days prior

t
across the past 7 days, the minimum value across the past 24 hours, and the maximum value

t t . oy .
o H,P¢(x;”"°) representing additional cross model terms for, respectively, the average values

across the past 24 hours

Nonlinear relationships for temperature and dew point are fit using cubic splines. Staff has empirically
found that nonlinear cubic splines with 2 degrees of freedom, corresponding to a single knot, best fit
historical data for temperature and dew point, and for all lag, average, minima and maxima terms. This
is consistent with staff’s understanding of the ‘U’ shape relationship, since a single knot positioned at or
near the minima of the ‘U’ will allow for a reasonable fit to the nonlinear relationship. All cubic spline
terms, including the location of the knot, are determined from least squares fits.

This quasi log-linear relationship is then used to determine linear coefficients for each term in the
model, including dummy variables. As discussed previously, the most recent 5 years, for which both load
and weather data is available, is used to train the model. The results of the training is the complete
determination of this quasi nonlinear relationship between load and weather variables, which is then
used to create a set of 35 yearly load profiles from the 35 years of weather data available. The final
result of this analysis is 35 synthetic yearly normalized load (consumption) profiles for each geographic
region in the SERVM model.

Goodness of fit is determined by examining how well the synthetic load profiles fit the historical load
profiles during the 5 year period comprising the training data. Staff calculated R squared*! for each hour
of the model, for each geographic zone, as shown in Figure 4. Most values for R squared lie around 0.9, a
reasonable value.*? For some regions, like Pacific Gas and Electric, bay area, for which there is relatively
small load, the regression is not well defined, and values of R squared are significantly less than one.
Generally, values for R squared tend to be closer to one for daylight hours, when loads are significantly

41 R squared: See https://en.wikipedia.org/wiki/Coefficient of determination
42 Recall a value of R squared equal to one corresponds to a perfect fit.
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greater than during night time. Staff also considered whether potential bias exists in this approach by
examining the distribution of residuals by geographic region, as well as by month and time of day (day or
night). No significant systematic bias was found.

Figure 4: R squared versus hour from weather normalization regression analysis for all geographical
zones used in the CPUC production cost model. A dashed line at 0.9 is drawn for clarity.

Rsquared versus Hour
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2.6 Forecasts of Total Electricity Peak and Total Energy throughout Study
Years

2.6.1 Use of IEPR Forecasts and Hourly Shapes

As stated in the 2017 IEPR final report adopted by the CEC in February 2018,%3 the managed Single
Forecast Set specifies that the California Energy Demand (CED) 2017 adopted baseline “mid demand”
case with 1 in 2 weather conditions shall be used for system-wide studies along with the mid-mid
Additional Achievable Energy Efficiency (AAEE) and Additional Achievable Photo-Voltaics (AAPV) forecast
scenarios. CPUC staff has used this managed Single Forecast Set along with corresponding supplemental
data provided by the CEC that supplies the necessary temporal and geographic granularity required for
the modeling of load and demand-side resources in SERVM.

43 https://efiling.energy.ca.gov/getdocument.aspx?tn=223205
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The 2017 IEPR CED forecast for the first time also includes hourly forecasts for both load and demand-
side resources.** This is a major improvement in the fidelity of the IEPR forecast. CPUC staff has used
the IEPR CED forecast’s hourly shapes for the demand-side resources that SERVM represents as non-
dispatchable and non-weather-dependent resources.

For modeling activities in 2019, including Reference System Plan development for the 2019-20 IRP cycle,
staff expects to use the 2018 IEPR Update CED forecast, recently adopted by the CEC in January 2019.
As discussed later in Section 3 of this document, staff also expects the CAISO’s 2019-20 TPP to use the
2018 IEPR Update CED forecast.

In summary, the IEPR CED forecast is used to:

e Linearly scale up the 35 weather years of system level synthetic hourly load shapes described in
the previous section to match the annual peak demand and energy of the IEPR forecast baseline
with baseline (committed) BTM PV reductions backed out. (The IEPR baseline is already without
AAEE and AAPV.)

e Create non-dispatchable resources in SERVM to represent each of the following: sum of baseline
(committed) BTM PV and AAPV, AAEE, electric vehicles (EV) load, and Time-Of-Use (TOU) rate
impacts.

The following table itemizes key forms and workbooks that CPUC analytical work relies on.

44 Eor each forecast year, hourly data were developed for load and demand-side resources for the three large IOU
TAC areas, i.e. the CAISO control area. Hourly data were not developed for areas outside the CAISO control area.
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Table 3: IEPR Forms and Workbooks and Uses

IEPR Form or Workbook Geography | Data component How used

Form 1.1c: Electricity IRP load and
Deliveries to End Users by | LSE Sales load by LSE emissions
Agency (Retail Sales) accounting
Form 1.5a: Total Energy to System load without AAEE & Scale enerav of
Serve Load by Agency and | Agency/BA | AAPV (committed BTM PV svnthetic sgh\; es
BA (Sales plus Line Losses) must be removed) 4 P
Form 1.5b: 1in 2 Net System peak without AAEE &

. . Scale peak of
Electricity Peak Demand by | Agency/BA | AAPV (committed BTM PV svnthetic shapes
Agency and BA must be removed) ¥ P
Form 1.2: Total Enery to Planning Individual load and load Cross-checking
Serve Load (equals sales e

. Areas modifier components totals
plus line losses)

Form 1.4: Net Peak . - Remove committed
. Individual load, load modifier .
Demand (equals total end Planning . BTM PV reductions
. components, and peak shift .
use load plus losses minus | Areas and peak shift from
. factor
self-generation) system load
CAISO Hourly Loads and | louTac | ‘dividualload and load Build EV, TOU, and
. modifier components hourly
Modifiers areas AAEE hourly shapes
and annually
All AAEE Savings by Utility | Large I0Us | AAEE including SB350 savings ;’:;At’:iiatlc:i:g
and Sector End Use & POUs by IOU and POU
hourly shapes
Remove committed
All Committed PV and Installed capacity, energy, and BTM PV reductions
AAPV by Agency and BA Agency/BA eak impacts from system load;
y Agency P P Build total BTM PV
hourly shapes
Individual load and load Remove EV
CAISO Load and Modifiers modifier components and additions from
. . . IOU TAC . .
Mid Baseline-Mid AAEE- areas underlying assumptions (T&D system load and
Mid AAPV factors, coincidence factors, EV | cross-checking
and other electrification) totals

2.6.2 Reconstituting forecasts of peak and total consumption

The system level synthetic hourly load shapes were developed based on historical consumption load,
specifically, metered sales load but with load reductions from historical BTM PV self generation and
demand response events removed, including accounting for T&D losses since all SERVM modeling is at
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the system level.*> As such, staff must use the same type of annual peak demand and energy value from
the IEPR CED forecast in order to correctly scale up the synthetic load shapes. Specifically, staff used the
IEPR Form 1.5b “1 in 2 net peak demand (non-coincident) no AAEE AAPV” and Form 1.5a “net energy for
load no AAEE AAPV”4® but added back the respective peak and energy reduction from BTM PV self
generation including avoided losses for both sets of data.*” Staff “backed out” the BTM PV load
reduction using raw self-generation forecast data (includes installed capacity, energy, and peak impact,
by agency/BA and year) provided by CEC Demand Analysis staff. Staff also backed out future impacts
from Electric Vehicles and TOU rates from the IEPR CED forecast since those effects are modeled as
separate shapes from the load shapes in SERVM. In the case of peak demand data, staff also backed out
the IEPR’s peak shift adjustment for IOU planning areas since essentially the consumption peak was
needed. The resulting IEPR peak and energy values after the adjustments described above were then
used to scale up the synthetic load shapes to produce a final system level consumption shape for a
future study year.

2.6.3 Linear Stretching of Consumption Shapes to Forecast Years

The mathematical process for scaling the 35 normalized synthetic hourly load shapes to match a target
IEPR study year forecast peak and energy is explained in this subsection. Peak loads in each synthetic
load shape varied based on the relevant historical weather patterns. The peak loads can range from
around 7% higher than normal peak in hot years to around 10% below normal peak in mild years. A
single scaling factor was calculated by dividing the target peak for the study year by the average of the
peak loads from the raw 35 synthetic load shapes. The synthetic load shapes must also be scaled such
that total energy matches the study year forecast total energy, by SERVM zone, using an algorithm that
maintains the peak values.

The algorithm takes the normalized hourly load forecast shape for a given year, X;, (developed in the
weather normalization process described in section 2.5.2), and creates a linear transformation aX; +
b = Y; such that max Y; = q and mean, Y; = p. That is, one can transform all 35 shapes such that the

average peak and total energy of the load shapes matches the annual average (mean) and peak load
(max) corresponding to the target year forecast.

The justification for this linear transformation is as follows: If you take the peak for the original load
forecast to be mtaxXt = s and the energy to be mean; X; = r, then

This comes from some basic substitution:

4> Note that historical non-PV self generation was left embedded during the development of synthetic load shapes.
Staff felt that this simplifying convention was fine since non-PV self generation generally has a flat profile and is
not weather-dependent.

46 http://energy.ca.gov/2017 energypolicy/documents/#02212018

47 Note that we are backing out the “committed PV self generation” impacts only and leaving non-PV self
generation impacts embedded in the baseline. The AAPV is already removed from the load forecast by virtue of
using the IEPR Form 1.5 version with “NO AAEE AAPV.”
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gq—b q-b

Y, =qg= X.+bD)=g=>a= =
m?xt q miax(at )=q=a m{;lxXt S

And
mean, ¥; = p = mean(aX; + b) =p=b =p—a(meanX,) = b =p —ar

Substituting for a in the second equation gives the result for b:

O e N R (R B e B AL B P

Substituting for b in the first equation gives the result for a:

ps—qr qs—qr —ps+qr
_1T s s—r _qs—ps _q—p
a= = = =
s s s(s—r) s-—r

This approach is the basis for a linear transformation that takes the original load shape, characterized by
a mean and peak energy, to a transformed load shape, characterized by the mean and peak energy of
the target year.*® Adjusted scaled load shapes are posted to the CPUC website.*® Each of the 35
normalized synthetic hourly load shapes uses the 1990 calendar, meaning the first day of the year is a
Monday, and all holidays and weekends correspond to 1990 dates. 1990 is not a leap year, so all
synthetic load shapes are uniformly 365 days, or 8760 hours, in length.

The SERVM model can be configured to apply probabilities to each of the 35 weather years used as
input. Currently, Energy Division’s model is setup with the 35 weather years 1980-2014 and each year
has equal weight, i.e. probability of 1/35. If data becomes available that indicate more recent years’
weather patterns should be more heavily weighted, e.g. due to climate change projections, Energy
Division could consider updating the weighting of SERVM'’s weather years.

2.6.4 Economic and Demographic Forecasting Uncertainty

Load uncertainty is driven not only by year-to-year volatility in weather patterns, but also by long-term
uncertainty in economic and demographic growth forecasts. Unanticipated economic growth or
downturns can result in peak loads that are substantially higher or lower than forecast.

SERVM accounts for this potential error by incorporating a “load forecast multiplier” into each model
run. A range of load multipliers can be entered into the model, along with the probability of selecting
each value. Collectively, they intend to represent the distribution of load forecasting error due to non-
weather causes (economics, demographics, etc.). At the beginning of each case, a particular weather
year and its corresponding load shapes are selected. A load forecast multiplier is selected
independently, and all hourly load values are adjusted upwards or downwards by that same value. For

48 The load stretching algorithm comes from Ben Kujala of the Northwest Power and Conservation Council
(http://www.nwcouncil.org/)

43 http://www.cpuc.ca.gov/General.aspx?id=6442451973
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example, if a load forecast multiplier of 0.95 is selected (simulating an unexpected economic downturn),
then a region with a peak load of 1000 MW in the given weather year would be adjusted to have a peak
load of 950 MW. A new weather year and a new load forecast multiplier would be selected for the next

case. Number of weather years multiplied by number of load forecast multipliers equals the number of
total cases that are run as part of a study.

The load forecast multipliers used in Energy Division modeling are based on analysis of near term
forecasting that was available from the OECD Journal.>® Staff evaluated projections of 1 year ahead and
2 year ahead GDP growth, noting the magnitudes of GDP uncertainty and their probabilities. These
figures were entered as a basis for the load forecast uncertainty variables in SERVM. The values are
summarized in the table below.

Table 4: Economic/Demographic Forecast Error Probabilities

Magnitude of forecast error Probability of error occurring
(percentage) (percentage)
2.5% error 6.68% probability
1.5% error 24.17% probability
0% error 38.29% probability
-1.5% error 24.17% probability
-2.5% error 6.68% probability

Source: OECD Journal: Journal of Business Cycle Measurement and Analysis, Volume 2010 Issue 2. “An
Evaluation of the Growth and Unemployment Forecasts in the ECB Survey of Professional Forecasters”

2.6.5 Hourly Shapes for BTM PV, AAEE, EV, TOU Rate Impacts

The sum of baseline (committed) BTM PV and AAPV, AAEE, electric vehicles (EV) load, and Time-Of-Use
(TOU) rate impacts were each modeled as non-dispatchable resources in SERVM. As explained above,
their effects were removed from the load forecasts used to develop the hourly load shapes used by
SERVM. The installed capacity and annual energy of total BTM PV, by year and agency/BA, was sourced
from the 2017 IEPR CED forecast, mid “committed PV self generation” plus mid “AAPV” scenarios. The
explanation of how this data was used to create solar generation profiles is provided later in this
document under the section describing how renewable resource units are modeled in SERVM (i.e. type
R resources in SERVM nomenclature).

The 2017 IEPR CED forecast included annual hourly shapes for AAEE, EV load, and TOU rate impacts.
The hourly data were sourced directly from the CEC Demand Analysis staff. The hourly data by large IOU
TAC area and by forecast year, was matched to the corresponding SERVM zone and target study year.

30| ink here: http://www.keepeek.com/Digital-Asset-Management/oecd/economics/an-evaluation-of-the-growth-
and-unemployment-forecasts-in-the-ecb-survey-of-professional-forecasters jbcma-2010-5km33sg210kk#page9
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The AAEE and TOU shapes were directly used to build non-dispatchable resources in the SERVM model.
For EV shapes, two options were available: IEPR-provided EV hourly shapes vs. month-hour normalized
EV shapes in the RESOLVE model. Staff elected to directly use the IEPR-provided EV hourly shapes. Each
of the SERVM annual shapes for AAEE, TOU, and EV load do not vary based on which of the 35 weather
years is being used as the basis for the load shape in a given SERVM model study year. In other words,
staff assumed AAEE, TOU, and EV charging patterns are generally weather independent.

2.7 Existing and New Resource Portfolios

As described earlier in this document, Energy Division staff sourced data on the existing fleet of
generating units dispatched within the CAISO control area from the CAISO MasterFile. For existing non-
CAISO generating units (includes most of the rest of the Western Interconnect), staff sourced data from
the TEPPC 2026 Common Case v2.0.

To support the RA and IRP proceedings, SERVM was used to study the years 2020, 2022, 2026, and 2030.
Studying these years required a projection of the mix of generating units that will come online or retire
by the target study year. The projected generation mix coming online or retiring can be broadly
categorized as follows:

e Contracted Additions: Projects not yet online that have an ownership or contractual relationship
with a LSE and have or are undergoing regulatory approval or LSE-board approval, as applicable
(e.g. projects in the CPUC’s RPS database and projects undergoing approval in a CPUC
Application)

e Planned Retirements: Units that have announced retirement (e.g. Diablo Canyon Power Plant
and units subject to Once Through Cooling (OTC) phase-out policy®?)

o New Additions: New (generic) resources selected or assumed by an exogenous analysis, usually
a capacity expansion model (e.g. the RPS Calculator or the RESOLVE model)

o New Retirements: Retirements of existing units assumed by an exogenous analysis, usually a
capacity expansion model (e.g. the RPS Calculator or the RESOLVE model)

SERVM unit-level inputs for contracted additions and planned retirements were drawn directly from the
sources described above. Assumptions for new additions and new retirements were drawn from the
RESOLVE capacity expansion model used in the IRP proceeding to develop the Reference System Plan
that was adopted in February 2018. SERVM results using these assumptions were published in
September 2018. During the latter half of 2018, the assumptions for new additions and new
retirements were updated to reflect the aggregation of individual LSE Plans that were filed in the IRP
proceeding in August 2018. SERVM results using these assumptions were published in January 2019.

2.7.1 Baseline Units and IRP Reference System Plan Units Tables

The aggregated by class baseline (baseline represents existing and contracted, as defined above) and
new resources for the CAISO balancing area as represented by the RESOLVE model are shown in the
tables below. The complete workbooks translating aggregate capacities in the RESOLVE model to

31 http://www.energy.ca.gov/renewables/tracking progress/documents/once through cooling.pdf
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available unit level data are posted to the Data section of CPUC Energy Division’s Energy Resource
Modeling landing page.>? This identifies units and locations for baseline (i.e. existing and contracted)
resources assumed in the 50% RPS Default Core Case and the 42 MMT Core Case that are part of the IRP
Reference System Plan adopted in February 2018.

One important amendment to the contracted units assumed by the RESOLVE model is that the Puente
Power Project3 should no longer be included. SERVM modeling in 2018 did not include this power plant

and Table 5 reflects that amendment (to the CAISO_Peakerl line item).

Table 5: Baseline Non-Renewables in RESOLVE (MW)

Resource Class 2018 2022 2026 2030
CAISO_CHP 1,685 1,685 1,685 1,685
CAISO_Nuclear 2,922 2,922 622 622
CAISO_CCGT1 12,419 13,703 13,703 13,703
CAISO_CCGT2 2,974 2,974 2,974 2,974
CAISO_Peakerl 5,195 5,293 5,293 5,293
CAISO_Peaker2 2,859 2,729 2,729 2,729
CAISO_Reciprocating_Engine 263 263 263 263
CAISO_ST 6,416 652 652 652
CAISO_Hydro 7,064 7,064 7,064 7,064
CAISO_PS 1,833 1,833 1,833 1,833
CAISO_Storage_Mandate 690 1,113 1,325 1,325
CAISO_Shed_DR_Existing 1,752 1,752 1,752 1,752

32 http://www.cpuc.ca.gov/energy _modeling/

33 http://www.energy.ca.gov/sitingcases/puente/
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Table 6: Baseline Renewables in RESOLVE (MW)

Zone>* Contract® | Technology 2018 2022 2026 2030
BANC CAISO Small_Hydro 6 6 6 6
CAISO CAISO Biomass 1,046 1,046 1,046 1,046
CAISO CAISO Geothermal 1,182 1,232 1,232 1,232
CAISO CAISO Small_Hydro 1,040 1,039 1,039 1,039
CAISO CAISO Solar 10,927 13,318 13,318 13,318
CAISO CAISO Wind 6,082 6,215 6,215 6,215
IID CAISO Geothermal 455 271 235 235
11D CAISO Solar 20 70 70 70
LDWP CAISO Wind 5 5 5 5
NW CAISO Biomass 32 32 32 32
NW CAISO Geothermal 15 15 15 15
NW CAISO Small_Hydro 29 29 29 29
NW CAISO Wind 1,646 1,646 1,646 1,646
SW CAISO Solar 127 127 127 127
SW CAISO Wind 622 622 622 622
Other CAISO Wind 849 849 849 849

>4 n RESOLVE, “zone” designates where a resource’s energy is balanced and delivered to meet load. A resource’s
zone does not necessarily have to be the same as its physical location.

33 |n RESOLVE, “contract” designates which “zone” has contracted for the resource and thus “owns” its energy
production and, if applicable, its renewable attribute (REC). If a resource’s zone and contract match, it means the
resource will deliver energy and RECs (if applicable) to that zone. However, a resource’s contract does not
necessarily have to match its zone. For instance, a solar resource in the SW (zone = SW) with a contract to CAISO
(contract = CAISO) will deliver its energy to meet SW loads, but will provide RECs that count towards the CAISO RPS
target. These resources are typically referred to as out-of-state RECs (bucket 3). The table above does not include
units that are tagged as zone = CAISO and contract = other area.
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Table 7: New Build in RESOLVE for 50% RPS Default Core Case

Renewable Resource Build by Location (MW)

RESOLVE Resource Tx Zone 2018 2022 2026 2030
Tehachapi_Solar Tehachapi - 1,013 1,013 1,013
Kramer_Inyokern_Solar Kramer_Inyokern - 978 978 978
Mountain_Pass_El_Dorado_Solar | Mountain_Pass_El Dorado - 62 62 62
Southern_Nevada_Solar Mountain_Pass_El_Dorado - 1,024 1,024 1,024
Central_Valley North Los Bano | Central Valley_North_Los_

s_Wind Banos 146 146 146 146
Tehachapi_Wind Tehachapi 153 153 153 153
In-State 299 2,353 2,353 2,353
Out-Of-State - 1,024 1,024 1,024
New Energy Storage Unit 2018 2022 2026 2030
Li_Battery MW - - - 807
Li_Battery MWh - - - 807
Li_Battery Duration hr - - - 1
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Table 8: New Build in RESOLVE for 42 MMT Core Case

Renewable Resource Build by Location (MW)

RESOLVE Resource Tx Zone 2018 2022 2026 2030
Tehachapi_Solar Tehachapi - 1,013 1,013 1,013
Kramer_Inyokern_Solar Kramer_Inyokern - 978 978 978
Riverside_East_Palm_Springs_So | Riverside_East _Palm_Sprin

lar gs - 3,831 3,831 3,831
Southern_Nevada_Solar Mountain_Pass_El_Dorado - 3,006 3,006 3,006
Solano_Wind Solano 643 643 643 643
Central_Valley_North_Los_Bano | Central_Valley_North_Los_

s_Wind Banos 146 146 146 146
Greater_Carrizo_Wind Greater_Carrizo 160 160 160 160
Tehachapi_Wind Tehachapi 153 153 153 153
Riverside East_Palm_Springs_Wi | Riverside East Palm_Sprin

nd gs 42 42 42 42
Northern_California_Geothermal | Northern_California - - - 202
In-State 1,145 6,967 6,967 7,169
Out-Of-State - 3,006 3,006 3,006
New Energy Storage Unit 2018 2022 2026 2030
Li_Battery MW - - 162 1,992
Li_Battery MWh - - 162 | 2,243
Li_Battery Duration hr - - 1 1

The PCM calibration and vetting activities described in Attachment B to D.18-02-018 state that SERVM
studies will be done based on a version of RESOLVE updated to use the 2017 IEPR demand forecast. This
version of RESOLVE using the 2017 IEPR, along with results from rerunning the 42 MMT core case, is

posted on the CPUC website.”® The baseline resources in RESOLVE remain the same but the new
resources selected by RESOLVE changed due to updated assumptions based on the 2017 IEPR. A
summary of the new resources selected is presented in the table below. The workbook translating

36 http://cpuc.ca.gov/General.aspx?id=6442457210
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aggregate capacities in RESOLVE using the 2017 IEPR to available unit level data for the 42 MMT core

case is also posted to the CPUC website.

Table 9: New Build in 2017 IEPR version of RESOLVE for 42 MMT Core Case

Renewable Resource Build by Location (MW)

RESOLVE Resource Tx Zone 2018 2022 2026 2030
Tehachapi_Solar Tehachapi - 1,013 1,013 1,013
Kramer_Inyokern_Solar Kramer_Inyokern - 978 978 978
Riverside_East_Palm_Springs_Sol | Riverside East_Palm_Spri
ar ngs - 854 854 918
Mountain_Pass_El _Dorad
Southern_Nevada_Solar o - 3,006 3,006 3,006
Solano_Wind Solano 643 643 643 643
Central_Valley_North _Los Banos | Central_Valley North_Los
_Wind _Banos 146 146 146 146
Greater_Carrizo_Wind Greater_Carrizo 160 160 160 160
Tehachapi_Wind Tehachapi 153 153 153 153
Riverside_East_Palm_Springs_Wi | Riverside_East_Palm_Spri
nd ngs 42 42 42 42
NW_Ext Tx_Wind Northern_California - - - 601
Riverside_East_Palm_Spri
SW_Ext_Tx_Wind ngs - - - 500
Greater_Imperial_Geothermal Greater_Imperial - - - 1,276
Northern_California_Geothermal | Northern_California - - - 424
In-State 1,145 3,990 3,990 5,754
Out-Of-State - 3,006 3,006 4,107
New Energy Storage Unit 2018 2022 2026 2030
Li_Battery MW - - 187 2,104
Li_Battery MWh - - 187 2,734
Li_Battery Duration hr - - 1.0 1.3
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SERVM modeling was also conducted to reflect the aggregation of individual LSE Plans that were filed in
the IRP proceeding in August 2018. This means a different mix of new resources than Table 9 was
modeled in SERVM. This portfolio was termed the “Hybrid Conforming Portfolio,” defined in the
November 15, 2018 IRP ruling. For details see SERVM Model Input Data for Hybrid Conforming
Aggregated LSE Portfolio 2030 Studies and Attachment A: IRP Proposed Preferred System Portfolio of
the January 11, 2019 IRP ruling.

2.7.2 Aligning the modeled generation fleets in RESOLVE and SERVM

Both SERVM and RESOLVE model the commitment and dispatch of resources to balance load and
generation across most of the Western Interconnect. As such, certain outputs from the two models can
be compared, e.g. emissions, operating cost, and capacity factors by unit class. To make the comparison
valid, it is important to align the inputs of both models as much as possible. However, SERVM models at
the unit-level with finer representation of the transmission system (24 zones), while RESOLVE models
with aggregated unit classes and coarse representation of the transmission system (6 zones). These
differences plus a number of other differences in modeling conventions and design make it challenging
to completely align the generation fleets modeled in RESOLVE and SERVM. For example, the SERVM
database is regularly updated and was built up from multiple sources over time, including the CAISO
Masterfile, the TEPPC Common Case, the RPS contracts database, and individual data requests to
utilities. In contrast, RESOLVE primarily draws from the preliminary 2017 CAISO NQC List posted August
2016, supplemented with additional information from the CAISO Master Generating Capability List
posted November 2016, the TEPPC 2026 Common Case, and the CARB Scoping Plan.

Energy Division staff attempted to reconcile and align the generation mix of existing units, contracted
additions, and planned retirements from both models. For new additions and new retirements, the
assumptions from RESOLVE were directly translated into the SERVM model, so the differences primarily
lie within the assumed baseline of each model. A comparison of the total baseline and new resources in
the RESOLVE model and the SERVM model was presented to the IRP Modeling Advisory Group process
on July 13, 2018,%” and updated in Attachment B of the September 24, 2018 Ruling Seeking Comment on
Production Cost Modeling®® in the IRP proceeding. The summary comparison table of generation
nameplate capacity for the CAISO area that was in Attachment B is repeated in the table below. See
Attachment B for further details describing this table.

57

http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerPr
ocurementGeneration/irp/2018/IRP_ MAG webinar 2018-07-13 SERVM 2017IEPR RSP _posted.pdf

>8 september 24, 2018 Ruling: http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M229/K725/229725945.PDF
Attachment B:
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/Utilitiesindustries/Energy/EnergyPrograms/ElectPo
werProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM results 20180913.pdf
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http://www.cpuc.ca.gov/General.aspx?id=6442459406
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/Attachment%20A_Proposed%20Preferred%20System%20Portfolio%20for%20IRP%202018_final.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/R1602007%20Fitch%20Ruling%20Seeking%20Comment%20PSP%20and%20TPP.pdf
http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IRP_MAG_webinar_2018-07-13_SERVM_2017IEPR_RSP_posted.pdf
http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IRP_MAG_webinar_2018-07-13_SERVM_2017IEPR_RSP_posted.pdf
http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M229/K725/229725945.PDF
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf

Table 10: Comparison of CAISO nameplate capacity in RESOLVE and SERVM model datasets

TOTAL SERVM TOTAL RESOLVE SERVM minus RESOLVE,

RESOURCES, MW RESOURCES, MW MW
Resource Type 2022 2026 2030 2022 2026 2030 2022 2026 2030
Battery Storage 1,115 1,514 3,431 1,113 1,512 3,429 2 2 2
Biomass 676 676 676 1,107 1,107 1,107 -431 -431 -431
Geothermal 1,728 1,728 3,428 1,487 1,487 3,187 241 241 242
Nuclear 2,923 623 623 2,922 622 622 1 1 1
Utility-scale Solar PV 19,637 19,637 19,701 19,211 19,211 19,276 426 426 425
Thermal 26,539 26,539 26,539 27,561 27,561 27,561 -1,023 -1,023 -1,023
Wind 10,522 10,522 11,325 7,816 7,816 8,917 2,707 2,707 2,409
BTMPV 12,301 16,727 20,759 12,758 17,454 21,573 -457 -727 -814
DR 1,754 1,754 1,754 1,752 1,752 1,752 1 1 1
Hydro 7,402 7,402 7,402 9,163 9,163 9,163 -1,761 -1,761 -1,761

The comparison above is between the 2017 IEPR version of RESOLVE results from the 42 MMT core case,
and the SERVM dataset. The capacity totals for SERVM include all units serving CAISO load including
must-take but not dynamically-scheduled specified imports. The capacity totals for RESOLVE include all
units modeled as within the CAISO footprint, whether contracted to a CAISO LSE or not. The “thermal”
category includes CHP, CCGT, CT, reciprocating engine, and steam. Capacity from existing renewables
are based on the contracted capacity reported in the RPS Contracts Database maintained by CPUC staff
and the three major IOUs. The SERVM BTMPV value is based directly on the installed capacity in the
2017 IEPR (mid case with mid-mid AAPV). The RESOLVE BTMPV value is based on a calculated capacity
from the 2017 IEPR BTMPV annual energy (mid case with mid-mid AAPV) and RESOLVE’s assumed
BTMPV capacity factor (which is slightly lower than the capacity factor assumed in the 2017 IEPR). Both
model’s BTMPV values are grossed up for T&D losses. The “hydro” category comparison excludes
Hoover and includes pumped storage hydro. Hoover is modeled in both models but was left out of this
input comparison in order to simplify the hydro comparison.
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2.8 Resource Inputs and Use Limitations

2.8.1 Generic Resource Information

There are a number of inputs that are common to all supply side resources (including demand response,
intermittent renewables, thermal facilities, and storage) in order to identify and characterize their
capabilities for the model. For example, the model requires each resource to be identified with a unique
ID number, a region in which the resource is located, and the first and last year of expected service.
Additionally, there are numerous input fields that are specific to particular unit types. The following
table summarizes the resource categories in the SERVM database.

Table 11: Resource types modeled in SERVM

Resource Type Description of Category

(T)hermal Combustion turbine

(F)ossil Fossil steam generators

(N)uclear Nuclear generators

(R)enewable Renewable generators whose output is dependent on weather patterns —

non-dispatchable and not economically triggered

(C)urtailable Demand response with constraints such as hours per day or month

(P)umped Storage Storage resources that can either consume or generate electricity;

(used to model all available energy and round-trip efficiency are essential modeling inputs
storage facilities) for this resource type
(H)ydropower Hydropower facilities that are not pumped storage; they are modeled as

one of three subtypes — emergency, scheduled, or run of river

For modeling activities in 2018, data sources used for generic facility inputs are summarized in Table 12,
below. The table does not list specific variable names in SERVM, but instead gives a less specialized
narrative name. These data fields are common to all types of resources. For some data fields, it is easy
to process existing data into SERVM data formats, but data reconciliation is difficult. For example, some
plants with more than one unit are modeled as a single combined unit in one source dataset, but as two
separate units in another dataset. Combined cycle plant configurations are often challenging, and
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judgment calls are needed. Energy Division staff will evaluate all judgment calls with other parties to
ensure the accuracy and reasonableness of decisions. It is also important to note that these values can
vary by month and by year — meaning a generator can have a heat rate, ramp rate, maximum capacity,
or any other variable that changes across different months and different years in the model.

Table 12: Generic data inputs common to most resource types (T, F, N, R, C, P, and H)

Variable Applicable Sources/Comments
Gen Types
Resource name All CAISO MasterFile for resources located in CAISO; TEPPC 2026

Common Case dataset for resources outside of CAISO
(including resources in LADWP or SMUD territories)

In service and All CAISO MasterFile for resources located in CAISO; TEPPC 2026
retirement dates Common Case dataset for resources outside of CAISO
(including resources in LADWP or SMUD territories)

Region location All CAISO MasterFile for resources located in CAISO; TEPPC 2026
Common Case dataset for resources outside of CAISO
(including resources in LADWP or SMUD territories)

Minimum and All CAISO MasterFile for resources located in CAISO; TEPPC 2026
maximum MW Common Case dataset for resources outside of CAISO
production level (including resources in LADWP or SMUD territories). Values
(Pmin and Pmax) can be month-specific.

Fuel type (i.e., T,F,N,R CAISO MasterFile for resources located in CAISO; TEPPC 2026
natural gas, Common Case dataset for resources outside of CAISO
biogas, nuclear, (including resources in LADWP or SMUD territories). Price
etc.) curves for natural gas are discussed in the thermal resources

section, below.

Each type of resource has some inputs that are unique to it. The following sections give more detail
regarding specific resource types in SERVM and the data sources used to populate the database for
modeling.
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2.8.1.1 Disaggregating Aggregate Units Into Child Units

Staff generated unit inputs from CAISO MasterFile data and the TEPPC 2026 Common Case as specified
above. Staff did some amount of disaggregation on the two data sources, however, when it was
apparent that between databases a combination of units were listed as one aggregated unit. Staff
believed that in the case of peakers and combustion turbines, the model would produce more accurate
results when aggregated units were modeled individually. This presented the challenge of generating
unit inputs for individual “child” units derived from one “parent” aggregate unit. Table 13 summarizes
how individual unit inputs were generated.

Table 13: Generation of Inputs for Child Units from Aggregate Units

Input Field Disaggregation Process

Inservice date List same inservice date for each child unit as the aggregate unit —in
effect all child units came online at same time and will retire at same

time

capmax Assume capmax of aggregate unit is total of all child units and divide
capmax equally among child units unless there is a reason to do
otherwise

capmin Assume capmin is the capmin of one child unit and use that value for

all child units, assuming each child unit has the same capmin

Minimum on time and Assume value is equal for all child units
minimum down time

Fuel type Assume all child units consume same fuel as aggregate — use same
value for all child units

Ramp rate Assume ramp rate is total of all ramp rates of all child units, and divide
equally among child units

Start up time Assume start up time is the same for all child units, and use the value
for the aggregate unit as the value for all child units

Start up costs Assume value is equal for all child units
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2.8.2 Thermal Resources - Types T, F, and N

The following discussion covers several types of information that are specific to thermal resources and
are not common across other types of generators. They include heat rate, ramp rate, and forced and
planned outage information. Because Energy Division staff conducted its reliability modeling utilizing a
blend of both aggregate heat rate and ramp rate data from the TEPPC Common Case (consistent with
similar production cost modeling work done by the CAISO and SCE) and unit-specific heat rate and ramp
rate values based on the CAISO MasterFile, there are some inputs that can be posted publicly and some
that cannot.

2.8.2.1 Heat Rates
SERVM can model the heat rate of a given generator over its operating range in one of two ways. It can
either:

e Calculate an average heat rate curve based on a quadratic equation. To create this
curve, staff takes data on the unit’s operation at different levels of MW output (known
as “segments”), and fits a quadratic curve to these segments. This quadratic curve is
defined by three coefficients, which are then input into SERVM.

e Use a constant average heat rate (i.e. a single value across the generator’s entire
operating range).

There are tradeoffs between these two approaches. Although the first method is more precise, the
segment data required to implement it is not always available. In addition, segment data is confidential
and cannot be available to the public. The second is simple and transparent, and avoids the
confidentiality concerns associated with using plant-specific heat rate segment information. However,
this approach does not fully reflect the nuances of economic dispatch. Thus, it would be impossible to
accurately project the actual dispatch of the facility in a real economic dispatch scenario (where the heat
rate of an individual unit is essential for determining its position in the supply stack). As a result, the
generator might be dispatched unrealistically throughout its operating range.

Because of the crucial importance of accuracy in calculating heat rates, staff decided to use the first
method as much as possible. Staff used CAISO segment data (for units in the CAISO) and TEPPC 2026
segment data (for units outside the CAISO) to calculate quadratic average heat rate curves, where this
data was available. Where this data was not available, staff assumed constant average heat rates.

The table below summarizes average heat rates by dispatchable thermal resource type in the CAISO
area. The averages include units within the CAISO and certain units located outside CAISO that have the
ability to be dynamically scheduled in the CAISO market. Data for years 2022 and 2030 are shown
because the thermal fleet that is online differs slightly between the two years. These average heat rates
are calculated from SERVM model results completed in July, 2018, as total fuel burn divided by total
MWh generated by unit type for the selected study year.
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Table 14: Average output heatrate by resource type in CAISO area

Unit Type Average heat rate | Average heat rate
MMBtu/MWh MMBtu/MWh
(2022) (2030)

CCGT 7.54 7.57

CT 10.98 10.71

CHP (dispatchable) 9.13 9.21

In the SERVM model, CHP heat rates were derived from the CAISO Masterfile which does not separate
fuel for useful heat vs. electricity production. This results in higher heat rates as some of the fuel goes
towards useful heat. Other models such as RESOLVE used a lower heat rate based on only the portion of
fuel used for electricity production. Energy Division staff will work with the CEC and CHP stakeholders to
improve the heat rate assumption in SERVM for future modeling activities.

2.8.2.2 Ramp Rates

SERVM allows for the entry of a set of ramp rate segments for each facility, both in the upwards and
downwards direction. Similar to its approach on heat rates, staff used the following “loading order” logic
to assign each generating unit a ramp rate (or multiple ramp rates, where data on multiple segments
across the plant’s operating range was available):

e [f the unit had segment data from the CAISO, use that data as-is, as it is the most precise.

e |[f that dataset was not available for the unit, use ramp rates from the 2026 TEPPC Common
Case.

e |[f neither of the above datasets were available, use class average ramp rates from the 2022
TEPPC Common Case (the class average ramp rates have not been updated since 2022).

2.8.2.3 Minimum Up and Down Times

The table below summarizes capacity-weighted average minimum up and down hours parameters by
dispatchable thermal resource type in the CAISO area. This does not include units located outside CAISO
but with the ability to be dynamically scheduled in the CAISO market, as minimum up and downtime
data is unavailable for these units. Data for years 2022 and 2030 are shown because the thermal fleet
that is online differs slightly between the two years.
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Table 15: Average minimum up and down times by resource type in CAISO area

Unit Type Average Average Average Average
minimum up minimum minimum up | minimum
hours (2022) down hours hours (2030) | down hours

(2022) (2030)

CCGT 7.2 4.8 7.2 4.8

CcT 1.8 1.6 1.8 1.6

CHP (dispatchable) 1.9 1.8 1.9 1.8

2.8.2.4 Generator Forced Outage and Planned Maintenance
To model generators properly, some data regarding the chances of outages on those generators are
needed. SERVM makes use of outage data by modeling generators with a distribution of time to fail,
time to repair, and partial outage states. Table 16 lists the variables in SERVM that relate to forced or
maintenance outages on generating units. The table does not list specific variable names in SERVM, but
instead gives a less specialized narrative name.
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Table 16: Inputs related to forced and planned outage hours and statistics for SERVM

Variable description Comments Sources/Comments
Availability Percentage factor (1- percent of time unit is At this time, Energy
unavailable) Division staff will

source all of these
inputs from GADS
data, using class

Time to fail User can specify a distribution of hourly values
for how long a resource will run before it fails.
SERVM draws a value from this distribution to averages.
draw outages on resources - user can specify
either high values (making generators more
reliable) or low values (making generators less

reliable).

Time to repair Given in hours, this variable is how long a
resource is out when it is on outage. Users can
specify a number of hours for planned and forced
outages separately.

Partial outage derate  User can specify partial outage states

Maintenance periods  Unit specific variable users can use to specify
more than one maintenance period for each year

Start up probability Users can specify what the probability is for
resources to fail upon startup

Since 2010, generator owners operating in North America have been required to electronically submit
outage data that describes each event that occurs at their generator to the North American Electric
Reliability Council (NERC) in a standard format. Before that, the data submission was voluntary and non-
electronic. Generator Availability Data Systems or (GADS) data is commonly used for purposes of
modeling generator outages in production cost models. This data is available to CPUC staff via license
from NERC. GADS data is reported to NERC by individual generators. Thus unit specific data is available,
although unit specific data would be confidential. For the RA and IRP modeling, Energy Division staff
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has generated class averages for these variables, using the following categories to differentiate
generators:

e Steam Turbines in California

e All Steam Turbines including those in California

e Combustion turbines within California

e All Combustion Turbines including those in California
e Combined Cycle plants within California

e All Combined Cycle plants including those in California

e All cogeneration facilities including those in California (there were insufficient facilities to
generate averages solely for California plants)

CPUC staff use of GADS data is in contrast with the modeling that the CAISO completed in support of the
CPUC’s Long Term Procurement Plan (LTPP) during 2012; for that modeling, the CAISO generated outage
statistics based on its internal outage logging system. The CAISO uses data it gathers from generators via
the Scheduling and Logging Interface for California (SLIC) database to generate class average summary
statistics. The SLIC system however is due to be retired in December 2014, and the new Outage
Management System (OMS) will replace it.>® While having the advantage of being public, class average
values fail to meaningfully differentiate between generators that in reality perform quite differently.

Considering the retirement of the San Onofre Nuclear Generating Station (SONGS) and other units that
use OTC technology, there is a particularly significant need to accurately differentiate between
individual generators (some of which are scheduled to come into compliance with OTC requirements) in
order to measure how reliability will be affected by forthcoming retirements and retrofits. Moreover, as
the generating fleet moves from fossil-based resources that largely operate in baseload orientation to
fewer fossil generators seeking to balance an ever increasing ratio of energy generated by intermittent
resources, differentiating between generators with regards to outage rates is important to gauge the
reliability effects of this transition. This level of granularity is needed to accurately assess how much
reliability and flexibility is served by those generators that retire (even differentiating between
individual OTC generators) and how the new generators recently brought online and those in planning
provide more, less, or equivalent reliability and flexibility.

2.8.2.5 Startup Information

SERVM requires that the user specify each generator’s startup time, startup cost, and startup fuel, for
three types of starts: hot, warm, and cold. Staff used segment data from the CAISO Masterfile to
calculate this startup information for generators in the CAISO. For generators outside of the CAISO, staff

39 The CAISO OMS project page is linked here:
http://www.caiso.com/informed/Pages/StakeholderProcesses/OutageManagementSystemProject.aspx
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used the TEPPC 2026 Common Case dataset, although this data only had cost, and not startup time or
fuel information. To fill in data gaps such as these, staff derived class averages from the CAISO data and
used this to fill in the missing data for both inside and outside CAISO.

The table below summarizes capacity-weighted average startup parameters by dispatchable thermal
resource type in the CAISO area. Data for years 2022 and 2030 are shown because the thermal fleet
that is online differs slightly between the two years. The start cost does not include the cost of burning
fuel during the start. Fuel burn from starts is separately calculated for each unit based on the unit’s
startup profile obtained from the CAISO Masterfile.

Table 17: Average hours per start by resource type in CAISO area

Unit Type Average Average Average Average
start cost S | hours per start cost S | hours per
(2022) start (2022) (2030) start (2030)
CCGT
11,191 2.48 11,162 2.47
CT
3,178 0.96 3,174 0.96
CHP (dispatchable)
421.0 1.02 421.1 1.02

2.8.2.6 Attributes of “Perfect Capacity” used for ELCC studies

Effective Load Carrying Capability (ELCC) studies require a relative comparison to a perfectly
dispatchable unit. SERVM models this construct with “perfect capacity.” This subsection describes the
attributes of “perfect capacity” as modeled in SERVM.

ELCC is calculated by measuring the reliability of the system (staff chooses to use the LOLE metric to
measure reliability), and achieving the desired LOLE. Then, the target generator is removed, a substitute
generator is added in, and LOLE is recalculated. The LOLE results are calibrated such that the right
amount of substitute capacity is added to achieve the same LOLE as the system with the target
generator included. The ratio of the substitute capacity MW to the target generator MW is referred to
as the ELCC of the target generator (relative to the substitute capacity).

It is important to specify exactly what the substitute capacity is in terms of performance, outage rate,
and other characteristics. One could choose an existing plant to compare against, or one could compare
against “perfect capacity”. A perfect generator is one with operational and performance characteristics
that ensure optimal ability of that generator to contribute to reliability. In essence, a “perfect”
generator contributes reliability to the system equivalent to the size of the generator — there is no
derate for performance. It is an impossible standard of course, since no generator operates perfectly,
without any equipment failures or with no time to start up. No generators are “perfect” and it is just a
theoretical modeling convention, but comparison against “perfect capacity” allows all generators to be
rated against each other. Even new peaker plants will not have an ELCC of 100%.
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Staff created generic “perfect capacity” peaker generators in the SERVM database such that they would

be available for use in ELCC studies. Table 18 lists the characteristics of the “perfect capacity.”

Table 18: Resource Characteristics of Perfect Capacity

Variable description

Capmax

CapMin

Availability

Time to fail

Time to repair

Startminutes

Maintenance periods

Start up probability

Description

Maximum generation level

Minimum capacity level (PMin)

Percentage factor (1- percent of time unit is
unavailable)

User can specify a distribution hourly values for
how long a resource will run before it fails.
SERVM draws a value from this distribution to
draw outages on resources - user can specify
either high values (making generators more
reliable) or low values (making generators less
reliable).

Given in hours, this variable is how long a
resource is out when it is on outage. Users can
specify a number of hours for planned and forced
outages separately.

How long in minutes for the plant to start up

Unit specific variable users can use to specify
more than one maintenance period for each year

Users can specify what the probability is for
resources to fail upon startup

Value of Variable

200 or 100 MW

1MW

1 (indicating perfect
availability)

90000 (never fail)

0 (Repairs instantly)

2 minutes

None

1 (Never fails on
startup)

-49-




2.8.2.7 Natural Gas Price Forecasts
The natural gas price forecasts utilized by SERVM were developed by the CEC, consistent with the 2017

Integrated Energy Policy Report (IEPR).?° CEC staff ran the NAMGas model to produce a forecast of
burner tip prices composed of prices at the natural gas hub and transportation prices to delivery point.
Staff deflated nominal prices to 2016 dollars using a series of deflators also produced by the CEC as part
of the NAMGas model. NAMGas results were also provided to WECC for use in the WECC-wide Anchor
Data Set.

Energy Division staff used the CEC NAMGas data to create both annual fuel price projections for each
hub, but also fuel handling inputs (the “csthnd” variable in SERVM). Each individual generating unit was
linked to a particular fuel price curve as well as given a fuel handling variable. These values are in
addition to other economic variables that SERVM uses to simulate economic operation of a particular
unit. In addition to fuel price and fuel handling charge, a unit would also have cost variables for startup
cost and variable operations and maintenance (“strtup” and “cstvar” variables in SERVM respectively) as
well as a profile of fuel used during startup.

2.8.2.8 Carbon Price Forecasts

The carbon allowance price forecasts utilized by SERVM were developed by the CEC, consistent with the
2017 Integrated Energy Policy Report (IEPR).®! The carbon allowance price was used in SERVM as a
carbon adder on fuel burn of in-state generation and thus affected dispatch decisions for in-state gas
generation. The carbon allowance price was also used in SERVM as a carbon adder on California import
hurdle rates and thus affected the decision to import energy into California. In 2030, the carbon
allowance price is $27.37 per metric ton of CO2. This equates to $11.71 per MWh as a California
unspecified import hurdle rate adder, assuming the unspecified import emissions factor 0.428 metric
tons per MWh (same as assumed in the RESOLVE model). Costs are in 2016 dollars.

2.8.2.9 Variable Operating and Maintenance Cost

In addition to fuel costs, variable operating and maintenance (O&M) costs add to the cost to a particular
generator of generating electricity. Variable O&M costs are expressed in S/MWh and factor into
dispatch order. Facilities with higher variable O&M costs are less likely to be dispatched than those with
lower costs, all else being equal.

The actual variable O&M costs of each facility are both confidential and difficult to arrive at. Analysis of
each individual contract would determine the cost values for each particular facility, and this value is
likely impossible to publish. It is important to note that this value, though generally reflective of
technical specifications of generating equipment, is also influenced by subjective contracting realities,
such as labor costs. Staff used the values in Table 19 below in all SERVM studies conducted in 2018. In
the future staff will collaborate with the CAISO to refine these values. Possible values can be drawn
from the CAISO Generator Resource Data Template for resource modeling, posted to the CAISO website.

0 The April 2018 version of the NAMGas model posted here:
http://www.energy.ca.gov/assessments/ng burner_tip.html

61 http://docketpublic.energy.ca.gov/PublicDocuments/17-1EPR-
03/TN222145 20180116T123231 2017 IEPR Revised Carbon Allowance Price Projections.xlsx
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http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IEPR_dollar_deflator_series_2018-04.xlsx
http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IEPR_dollar_deflator_series_2018-04.xlsx
http://www.caiso.com/market/Pages/NetworkandResourceModeling/Default.aspx
http://www.energy.ca.gov/assessments/ng_burner_tip.html
http://docketpublic.energy.ca.gov/PublicDocuments/17-IEPR-03/TN222145_20180116T123231_2017_IEPR_Revised_Carbon_Allowance_Price_Projections.xlsx
http://docketpublic.energy.ca.gov/PublicDocuments/17-IEPR-03/TN222145_20180116T123231_2017_IEPR_Revised_Carbon_Allowance_Price_Projections.xlsx

Table 19: Variable Operations and Maintenance Costs

Type of resource Weighted average VOM
for CAISO, $/MWh
Battery Storage $0.31
Biogas and Landfill Gas $3.28
Biomass and Wood $2.86
CcC $2.65
Coal $2.84
Cogen $3.50
CT $4.08
DR $0.86
Geothermal $2.78
ICE $3.44
Nuclear $1.00
PSH $2.00
Solar PV $0.00
Steam $3.01
Wind $1.96

2.8.2.10 Specified Imports, Dynamically scheduled resources, and Direct Purchases

The WECC interconnect is a very complicated region, with power flowing over numerous transmission
interfaces. Several large plants provide energy to multiple regions, and provide valuable reliability
service across WECC. Some regions are more dependent on direct purchases from outside the region
than others, and it is very important to link regions with the generating plants that supply them with
power. For example, Southern California Edison relies on specified imported power from among other
facilities, the Palo Verde Nuclear Station in Arizona and Hoover Dam in Nevada. LSEs within the CAISO
also directly purchase specified power from certain out-of-state renewable generators. Certain out-of-
state dispatchable generators can also be dynamically-scheduled into the CAISO day-ahead market.

Each of these cases must be modeled in SERVM.
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Generally speaking, SERVM accounts for the production, exports, and emissions of a given generation
unit in the area in which that unit serves load (which does not necessarily match the area where the
generator is physically located, e.g. Hoover). There are two different ways that the user of SERVM can
specify this load area: through the normal Region variable, and through the Remote Generator tab of
the model. The use of these two concepts is explained below.

e All units in SERVM must have a Region. A Region roughly corresponds to a balancing authority.®?
Optionally, in addition to its Region, the user can declare a unit as a Remote Generator. If a unit
is declared as a Remote Generator, it has a “Source Region” and one or more “Remote
Regions.”

e If a unit has only a Region declared, but is not declared a remote generator, the model treats the
unit as having ALL of the following characteristics:

o The unit is considered physically located in that Region (usually a balancing authority).%3

o The unit primarily serves the load of that Region (usually a balancing authority).

o If at any point this unit exports to another region, its production counts as unspecified
exports (which the model calls “Energy Sales”). This is because the unit is not dedicated
to serving any particular region except its home region, and is exporting
“opportunistically” because that is an economically better option than ramping down.

e [f aunitis declared as a Remote Generator, the following applies:

o The unit is physically located in the “Source Region,” but primarily serves the load in the
Remote Region(s). This information supersedes the unit’s “Region.”

o The unit’s costs, generation, and carbon emissions, if any, accrue to the “Remote
Region(s)” because it is serving that region’s load.

o The unit’s production is counted as specified gross imports (to the Remote Region) or
gross exports (from the Source Region), which the model calls Direct Purchases or Direct
Sales, respectively. A later section explains these terms in more detail.

o Remote generators in SERVM are modeled as “must run” and are NOT economically
dispatched.

A drawback with the Remote Generator designation is that the specified import generator is dispatched
as a must run facility, without economic dispatch considerations. Thus there is the possibility of
unrealistic dispatch patterns. For those external facilities that are specified imports into a region and
are dispatched economically, i.e. dynamically scheduled in the CAISO day-ahead market, those facilities
were listed as being within the regions they are imported into. This preserved the economic dispatch
function.

62 The CAISO balancing area is an exception to this rule. It is broken out into four regions: PGE_Bay, PGE_Valley,
SCE, and SDGE. However, these are “co-regions” with zero transmission costs between co-regions but transmission
constraints between them to reflect possible congestion.

63 Even though in reality some units are not physically in that Region, e.g. Hoover and certain CAISO market
dynamically-scheduled OOS dispatchable units. Such OOS units are “modeled” as within the CAISO region so that
the model can economically dispatch them in CAISO. They cannot be modeled as “Remote Generator” because in
SERVM such remote generators are restricted to being modeled as must-run only.
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The table below summarizes how SERVM modeled different types of specified imports into the region
where it serves load. Note there was an input update between the IRP Reference System Plan with

2017 IEPR studies and the IRP Hybrid Conforming Portfolio studies due to better information on whether
a generator primarily serves load where it is located or exports to a remote region. See Attachment B to
the September 24, 2018 IRP ruling for a presentation of inputs and results for Reference System Plan
with 2017 IEPR studies and see Attachment A to the January 11, 2019 IRP ruling for a presentation of
inputs and results for Hybrid Conforming Portfolio studies.

Table 20: How SERVM modeled different types of specified imports

Reference System Plan w/ Hybrid Conforming
Modeled . . .
. 2017 IEPR model: Capacity | Portfolio model: Capacity
Unit as remote PR . P .
enerator? to load “Region” mapping | to load “Region” mapping
& : in 2030 in 2030
SRP (3180 MW), SRP (3180 MW),
Palo Verde Yes LADWP (407 MW), LADWP (407 MW),
SCE (623 MW) SCE (623 MW)
Out-of-CAISO renewables
Al 7 MW
that serve CAISO load, Yes EADSVC\)/,P( (23? ng CAISO, (2247 MW)
including RESOLVE selected SMUD (260 MW) SMUD (230 MW)
resources
Out-of-CAISO thermal
resources that dynamically
schedule into CAISO market No SCE (1799 MW) None
(tagged “DYN”): Arlington,
Griffith, Mesquite, Yuma
Hoover No LADWP (393 MW), LADWP (393 MW),
SCE (764 MW) SCE (764 MW)
. SCE (322 MW), SCE (322 MW),
Intermountain CC Repower No LADWP (878 MW) LADWP (878 MW)

Because Palo Verde and the out-of-CAISO renewables are must-run (first two rows of the table), they
can be modeled as remote generators. However, certain out-of-CAISO dynamically-scheduled resources,
for example Hoover and Intermountain, are economically dispatched by the CAISO in reality. Thus, these
units are “moved into” CAISO and LADWP for modeling purposes, with no remote generator variables
specified.

To account for the remote generators’ usage of the transmission system, transmission path capacities
from outside CAISO are decremented by the resources’ usage of that path.

2.8.3 Energy Storage Resources - Type P

While there are numerous different energy storage technologies, most can be described according to
several key variables such as available energy, maximum output, maximum draw, and efficiency. This
section describes these modeling inputs. However, because very little energy storage has been deployed
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http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGene